Задача двойственная к задаче о диете

Задача двойственная к задаче о диете thumbnail

Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Таблица 8.1

Исходные данные в задаче об оптимизации смеси

Содержание в 1 унции К

Содержание в 1 унции С

Потребность

Вещество Т

0,10 мг

0,25 мг

1,00 мг

Вещество Н

1,00 мг

0,25 мг

5,00 мг

Калории

110,00

120,00

400,00

Стоимость 1 унции, в центах

3,8

4,2

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов – К и С. Известно содержание тиамина и ниацина в этих продуктах, а также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в Табл. 8.1.

Задача линейного программирования имеет вид:

3,8K+4,2Cð min

0,10K+0,25C≥1,00

1,00K+0,25C≥5,00

110K+120C≥400,00

K≥0

C≥0

Ее графическое решение представлено на Рис. 8.1

 графическое решение задачи об оптимизации смеси

Рис. 8.41. Графическое решение задачи об оптимизации смеси

На рис. 8.4 ради облегчения восприятия четыре прямые обозначены номерами (1) – (4). Прямая (1) описывается уравнением 1,00K+0,25C=5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5, 0) на оси абсцисс и (0, 20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1) или на ней, в отличие от ранее рассмотренных случаев в предыдущей производственной задаче линейного программирования.

Прямая (2) – это прямая 110K+120C=400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при K=0, прямая (1) проходит через точку (0, 20), а прямая (2) – через расположенную ниже точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00K+0,25C=5,00

110K+120C=400,00

Из первого уравнения K=5-0,25C. Подставим во второе:
110(5-0,25C)+120C=400, откуда 550-27,5C+120C=400. Следовательно, 150=-92,5C , т. е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничение по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением – некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) – это прямая 0,1K+0,25C=1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10, 0) на оси абсцисс и (0, 4) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (4) или на ней, как и для прямой (1).

Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых, а также включает граничные отрезки). Область допустимых значений параметров, т. е. точек (К, С), можно назвать “неограниченным многоугольником”. Минимум целевой функции 3.8K+4,2C может достигаться только в вершинах этого “многоугольника”. Вершин всего три. Это пересечения с осями абсцисс (10, 0) и ординат (0, 20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина – это точка А пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10K+0,25C=1,00

1,00K+0,25C=5,00

Из второго уравнения K=5-0,25C, из первого
0,1(5-0,25C)+0,25C=5,00=0,25C=0,5+0,225C=1, откуда C=0,5/0,225=20/9 и K=5-5/9=40/9. Итак, A=(20/9,40/9).

Прямая (3) на Рис. 8.5 – это прямая, соответствующая целевой функции 3,8K+4,2C. Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8X40/9+4,2X20/9=236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по ранее описанным правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8K+4,2Cð min W1+5W2+400W3ð max

0,10K+0,25C ≥1,00 0,1W1+1,10W2+110W3≤3,8

1,00K+0,25C ≥5,00 0,25W1+0,25W2+120W3≤4,2

110K+120C ≥400,00 W1≥0

K ≥0 W2≥0

C ≥0 W3≥0

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т. е. оба числа равны 236/9. Интерпретация двойственных переменных: W1 – “стоимость” единицы вещества Т, а W2 – “стоимость” единицы вещества Н, измеренные “по их вкладу” в целевую функцию. При этом W3=0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W1,W2,W3 – это т. н. объективно обусловленные оценки (по Л. В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Читайте также:  Белково углеводная диета за сколько можно похудеть

Источник

2.1. Задача о диете

Исторические задача о диете является одной из первых задач линейного
программирования.

Постановка задачи – первый и наиболее важный этап построения модели,
способный обеспечить правильное решение проблемы.

Даме необходимо похудеть, за помощью обратилась к подруге.

Построение модели – рассмотрение этого этапа и является главной целью.

Подруга посоветовала перейти на рациональное питание, состоящее из двух
продуктов P и Q.

Суточное питание этими продуктами должно давать не более 14 единиц жира
(чтобы похудеть), но не менее 300 калорий. На упаковке продукта Р
написано, что в одном килограмме этого продукта содержится 15 единиц жира и 150
калорий, а на упаковке с продуктом Q – 4
единицы жира и 200 калорий соответственно. При этом цена 1 килограмма продукта
Р равна 15 руб., а 1 кг продукта Q – 25
руб.

Так как дама была стеснена в средствах, но ее интересовал вопрос: в какой
пропорции нужно брать эти продукты для того, чтобы выдержать условия диеты и
истратить как можно меньше денег?

Перейдем к формализации данной ситуации на языке математических символов.

Обозначим через х количество продукта Р и
через у количество продукта Q, требуемые
для выполнения условий диеты.

Количество единиц жира, содержащегося в х кг продукта
Р и в у кг продукта Q, равно
15х + 4 и по условию диеты не должно превосходить 14:

В свою очередь, количество калорий, содержащихся в х
кг продукта Р и в у кг продукта Q,
равно 150х + 200у и по условию диеты должно быть не меньше 300:

Теперь о стоимости z продуктов.
Она равна

и в соответствии с высказанными пожеланиями должна быть минимальной.

Последнее записывается так:

Тем самым мы получили систему формул:

которую решим графическим способом.

Задача двойственная к задаче о диете

Нас интересует только та ее часть, которая лежит над треугольником
BDE. Вычисляя значения z
во всех трех вершинах этого треугольника

и сравнивая полученные результаты, замечаем, что наименьшее значение (35)
достигается в вершине Е. Таким образом,

и искомая пропорция – 2 : 3.

2.2. Задача о выпуске продукции

Фирма выпускает два вида древесно-стружечных плит – обычные и
улучшенные. При этом производится две основные операции – прессование и отделка.
Требуется указать, какое количество плит каждого типа можно изготовить в течение
месяца так, чтобы обеспечить максимальную прибыль при следующих ограничениях на
ресурсы (материал, время, затраты):

Затраты

Партия из 100 плит

Имеющиеся ресурсы на месяц

обычных

улучшенных

Материал (фунты)
Время на прессование (часы)
Время на отделку (часы)
Средства (деньги)

20
4
4
30

40
6
4
50

4000
900
600
6000

Прибыль

80

100

max

Перейдем к построению математической модели
поставленной задачи. Введем следующие обозначения. Пусть

х – количество партий в 100 плит обычного
вида, изготавливаемых в течение месяца;
у
– количество партий в 100 плит
улучшенного качества, изготавливаемых в течение месяца.

Тогда ожидаемую прибыль можно записать так:

Требуется найти такие значения х и у,
подчиненные условиям

для которых

Для того, чтобы найти в первой четверти плоскости хОу
множество точек, координаты (х, у) которых удовлетворяют указанным выше
неравенствам, необходимо сначала построить прямые (по точкам их пересечения с
координатными осями)

а затем, используя точку начала отсчета О(0, 0),
определить соответствующие полуплоскости. Пересечением полученных полуплоскостей
будет четырехугольник ОВМЕ.

Наша целевая функция достигает наибольшего значения в одной
из вершин четырехугольника.

Нам необходимо найти координаты точки М – точки
пересечения прямых EF и АВ, для этого надо
решить систему уравнений

Вычислить значения z в точках
В(0, 100), Е(150, 0), М(100, 50):

Из полученных значений выберем наибольшее и получим ответ:

2.3. Общая задача линейного программирования

В общем случае и число неизвестных , и число ограничений
могут достигать десятков, сотен, тысяч и т.д. Однако набор соответствующих
условий ничем (кроме количества) от рассмотренных выше примеров не отличается.
Это нетрудно заметить уже по общей постановке задачи линейного программирования.

Стандартная математическая формулировка общей задачи
линейного программирования выглядит так: требуется найти экстремальное значение
показателя эффективности (целевой функции)

(линейной функции элементов решения
) при линейных ограничительных
условиях, накладываемых на элементы решения:

где – заданные числа.

Что касается существующих методов решения этой задачи с
числом переменных, больших двух, то в их основе лежат те же идеи, на которые мы
опирались при разработке графического подхода. Конечно, в случае сильного
увеличения числа переменных и ограничений техника получения решения заметно
усложняется, но она опирается на совершенно стандартные, хорошо разработанные
алгоритмы (возникающие трудности связаны лишь с ростом объема необходимых
вычислений).

Общую постановку задачи линейного программирования можно
записать в более компактной форме, если воспользоваться следующим правилом.

Правило сокращенного суммирования. Для обозначения
суммы чисел :

принята такая запись:

где ∑ – знак суммирования, а
k – индекс суммирования.

Это обозначение очень удобно:

А вот как выглядит запись общей задачи линейного
программирования:

2.4. Транспортная задача

Важный тип задач линейного программирования представляет
задача о перевозках.
Называется она так потому, что цель этой задачи
заключается в минимизации полной стоимости перевозок известного количества
товаров со складов к потребителю.

Читайте также:  Диета при гастрите и дуодените у детей

Сбалансированная задача – задача о перевозках, в
которой общий объем товаров, готовых к отправлению, в точности равен объему
товаров, который готовы принять в пунктах назначения.

Пример 1. Рассмотрим транспортную задачу, заданную таблицей

 ВНаличие
12
А 1

2

1

2

2

1

20

10

Запрос161430

Решение. Пусть – искомое число единиц
товара, пересылаемого из пункта в пункт
. Тогда данные таблицы можно
представить в следующем виде:

при условии, что

Положим и выразим через
t остальные переменные:
из первого уравнения: ,
из второго уравнения: ,
из третьего уравнения:

Тогда

Из того, что все не
отрицательны, получаем, что переменная t должна
удовлетворять одновременно следующим четырем неравенствам:

Тем самым, мы получили условие .

Не трудно заметить, что при
t =
16.

Ответ:

 ВНаличие
123
А1856120
2497180
Запрос7014090300

Пример 2. Компания имеет два товарных склада и трех оптовых
покупателей. Известно, что общий объем запасов на складах составляет 300 тыс.
единиц продукции и совпадает с общим объемом заказов покупателей.

Обозначим через количество товара,
поставляемого со склада покупателю
.

Тогда соответствующая транспортная задача может быть
сформулирована следующим образом.

Минимизировать общую стоимость перевозок:

при условии, что

Получаем задачу линейного программирования, в которой
основные ограничения вследствие того, что транспортная задача сбалансирована,
является равенствами.

Положим и
выразим через u и
v
остальные переменные. Имеем

Учитывая, что все перевозки должны получить неотрицательные значения, мы
приходим к задаче

которую можно решить графическим методом.

Выписанные неравенства определяют на плоскости (u,
v) пятиугольник с вершинами (30, 0), (70, 0), (70, 50), (0,
120), (0, 30).

Ответ:

В начало

Источник

Аннотация: На экономических примерах рассматривается задача линейного программирования, в том числе двойственная к ней, а также графический и симплекс-метод ее решения. Даются постановки транспортной задачи и задачи о ранце. Вводится понятие графа, дается понятие о задачах коммивояжера, кратчайшего пути, максимального потока.

Линейное программирование

В теории принятия решений большое место занимают оптимизационные задачи Среди них наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола – 20 единиц (футов красного дерева). Изготовление стула требует 10 человеко-часов, стола – 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула – 45 долларов США, при производстве стола – 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х_1 – число изготовленных стульев, Х_2 – число сделанных столов. Задача оптимизации имеет вид:

45 Х_1 + 80 Х_2 to max\
5 Х_1 + 20 Х_2 le 400,\
10 Х_1 + 15 Х_2 le 450,\
Х_1 ge 0,\
Х_2 ge 0.

В первой строке выписана целевая функция – прибыль при выпуске Х_1 стульев и Х_2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х_1 и Х_2. При этом должны быть выполнены ограничения по материалу (вторая строчка) – истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) – затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х_1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х_1 положительно. Но невозможно представить себе отрицательный выпуск – Х_1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х_1, а по вертикальной оси ординат – значения Х_2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения вектора (Х_1, Х_2) объемов выпуска в виде треугольника (рис. 8.1).

Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х_1, соответствующую стульям, в точке (80, 0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х_2, соответствующую столам, в точке (0, 20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не точное равенство – материал останется.

Задача двойственная к задаче о диете

Рис.
8.1.

Аналогичным образом можно изобразить и ограничения по труду (рис. 8.2).

Задача двойственная к задаче о диете

Рис.
8.2.

Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х_1, соответствующую стульям, в точке (45, 0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х_2, соответствующую столам, в точке (0, 30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не точное равенство – часть рабочих будет простаивать.

Читайте также:  Рецепты супа по диете 5 рисовые

Мы видим, что очевидного решения нет – для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо “совместить” рис. 8.1 и рис. 8.2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис. 8.3).

Задача двойственная к задаче о диете

Рис.
8.3.

Таким образом, множество возможных значений объемов выпуска стульев и столов (Х_1, Х_2) , или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис. 8.3. Три его вершины очевидны – это (0,0), (45,0) и (0,20). Четвертая – это пересечение двух прямых – границ треугольников на рис. 8.1 и рис. 8.2, т.е. решение системы уравнений

5 Х_1 + 20 Х_2 = 400 ,\
10 Х_1 + 15 Х_2 = 450.

Из первого уравнения: 5 Х_1 = 400 - 20 Х_2, Х_1 = 80 - 4 Х_2. Подставляем во второе уравнение:

10 (80 - 4 Х_2) + 15 Х_2 = 800 - 40Х_2 + 15 Х_2 = 800 - 25 Х_2 = 450,

следовательно, 25 Х_2 = 350, Х_2 = 14, откуда Х_1 = 80 - 4 times 14 = 80 - 56 =24.

Итак, четвертая вершина четырехугольника – это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования – максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае – в одной вершине, и это – единственная точка максимума. В частном – в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х_1 + 80 Х_2 принимает минимальное значение, равное 0, в вершине (0, 0). При увеличении аргументов эта функция увеличивается. В вершине (24, 14) она принимает значение 2200. При этом прямая 45 Х_1 + 80 Х_2 = 2200 проходит между прямыми ограничений 5 Х_1 + 20 Х_2 = 400 и 10 Х_1 + 15 Х_2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24, 14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача. Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или, наоборот, вместо минимума – максимум). Задача, двойственная к двойственной – эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

begin{align*}45 Х_1 &+ 80 Х_2 to max ,	&	400 W_1 &+ 450 W_2 to min ,\
 5 Х_1 &+ 20 Х_2 le 400 ,	&	5 W_1 &+ 10 W_2 ge 45,\
 10 Х_1 &+ 15 Х_2 le 450 ,	&	20 W_1 &+ 15 W_2 ge 80, \
 Х_1 &ge 0 ,	&			W_1 &ge 0,\
 Х_2 &ge 0 .	&			W_2 &ge 0.\
end{align*}

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W_1 и W_2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W_1 и W_2 называют “объективно обусловленными оценками” сырья и рабочей силы.

Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения – системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912-1986) в 1930-х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910-1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько типовых задач линейного программирования .

Задача о диете (упрощенный вариант) . Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Таблица
8.1.
Исходные данные в задаче об оптимизации смеси

Содержание в 1 унции К Содержание в 1 унции С Потребность
Вещество Т0,10 мг0,25 мг1,00 мг
Вещество Н1,00 мг0,25 мг5,00 мг
Калории110,00120,00400,00
Стоимость 1 унции, в центах3,84,2

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов – К и С. Известно содержание тиамина и ниацина в этих продуктах, а также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в табл. 8.1.

Задача линейного программирования имеет вид:

3,8 К + 4,2 С to min ,\
0,10 К + 0,25 С ge 1,00 ,\
1,00 К + 0,25 С ge 5,00 ,\
110,00 К + 120,00 С ge 400,00 ,\
К ge 0 ,\
С ge 0.

Ее графическое решение представлено на рис. 8.4

 Графическое решение задачи об оптимизации смеси

Рис.
8.4.
Графическое решение задачи об оптимизации смеси

Источник